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CHAPTER
TWO

5th Generation (5G)

Acknowledged Mode (AM)
Acknowledgement (ACK)

Bandwidth Part (BWP)

Bearer Identifier (BID)

Carrier Component (CC)

Data/Control (D/C)

Data Radio Bearer Identifier (DRBID)
Downlink (DL)

Downlink Control Indicator (DCI)

Evolved Node-B (eNB)

Evolved Packet Core (EPC)

External Interface — User Plane (X2-U)
Finite State Machine (FSM)

General Packet Radio Service (GPRS)
GPRS Tunneling Protocol — User data tunneling (GTP-U)
Guaranteed Bit Rate (GBR)

Head-of-Line (HOL)

Hybrid Automatic Repeat Request (HARQ)
Identifier (ID)

International Mobile Subscriber Identity (IMSI)
Internet Protocol version 4 (IPv4)

Line of Sight (LoS)

Listen Before Talk (LBT)

Logical Channel Identifier (LCID)

Long Term Evolution (LTE)

Modulation and Coding Scheme (MCS)

ACRONYMS
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¢ Maximum Transmission Unit (MTU)

¢ Medium Access Control (MAC)

¢ New Radio (NR)

¢ Network Simulator 3 (ns-3)

¢ Next-Generation Node-B (gNB)

¢ Non-Access Stratum (NAS)

¢ Non-Guaranteed Bit Rate (NGBR)

¢ Non-Standalone (NSA)

¢ Packet Data Convergence Protocol (PDCP)
» Packet Gateway (PGW)

¢ Power Spectrum Density (PSD)

¢ Protocol Data Unit (PDU)

¢ Quality of Service Class Indicator (QCI)

¢ Radio Access Network (RAN)

¢ Radio Link Control (RLC)

» Radio Network Temporary Identity (RNTI)
¢ Radio Resource Control (RRC)

¢ Random Access Control Channel (RACH)
¢ Receive (RX)

¢ Resource Block (RB)

¢ Round Robin (RR)

¢ Service Access Point (SAP)

* Service Data Unit (SDU)

 Serving Gateway (SGW)

* Signal-to-Interference-plus-Noise Ratio (SINR)
* System Frame Number / Subframe Number (SFN/SF)
¢ Time Division Duplex (TDD)

¢ Transmit (TX)

¢ Transmission Time Interval (TTI)

¢ Transparent Mode (TM)

 Transport Block (TB)

¢ Tunnel Endpoint Identifier (TEID)

* Unacknowledged Mode (UM)

e Uplink (UL)

e User Datagram Protocol (UDP)

¢ User Equipment (UE)
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CHAPTER
THREE

OVERVIEW

This is a tutorial focused on the data plane operation of the example program cttc-nr-demo found in the examples/
directory of the ns-3 nr module. The objective of the tutorial is to provide a detailed, layer-by-layer walk through of a
basic NR example, with a focus on the typical lifecycle of packets as they traverse the RAN. The tutorial points out all of
the locations in the RAN model where packets may be delayed or dropped, and how to trace such events.

This document assumes that you have already installed 7s-3 with the nr module and you are familiar with how ns-3 works.
If this is not the case, please review the nr module README, the ns-3 Installation Guide and its Tutorial as needed. The
Getting Started page of the nr module should also be reviewed.

The companion to this tutorial is the detailed manual for the nr module, which goes into more detail about the design and
testing of each of the components of the 5G NR module.

To check if you are ready to work through this tutorial, check first if you can run the following program:

S ./ns3 run cttc-nr-demo

and that it outputs the following output

Flow 1 (1.0.0.2:49153 -> 7.0.0.2:1234) proto UDP
Tx Packets: 6000

Tx Bytes: 768000
TxOffered: 10.240000 Mbps
Rx Bytes: 767744

Throughput: 10.236587 Mbps
Mean delay: 0.271518 ms
Mean jitter: 0.030032 ms
Rx Packets: 5998
Flow 2 (1.0.0.2:49154 -> 7.0.0.3:1235) proto UDP
Tx Packets: 6000

Tx Bytes: 7680000
TxOffered: 102.400000 Mbps
Rx Bytes: 7667200

Throughput: 102.229333 Mbps
Mean delay: 0.900970 ms
Mean jitter: 0.119907 ms

Rx Packets: 5990

Mean flow throughput: 56.232960
Mean flow delay: 0.588507

The tutorial also makes extensive use of the ns-3 logging framework. To check if logs are enabled in your ns-3 libraries,
try the following command and check if it outputs some additional verbose output:

S NS_LOG="CttcNrDemo" ./ns3 run cttc—-nr-demo



https://gitlab.com/cttc-lena/nr/-/blob/master/examples/cttc-nr-demo.cc
https://gitlab.com/cttc-lena/nr/-/blob/master/README.md
https://www.nsnam.org/docs/installation/ns-3-installation.pdf
https://www.nsnam.org/docs/tutorial/html/
https://cttc-lena.gitlab.io/nr/html/index.html#getting-started
https://cttc-lena.gitlab.io/nr/nrmodule.pdf
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The command should print the following informational message on screen:

+0.000000000s -1 CttcNrDemo:main(): [INFO ] Creating 2 user terminals and 1 gNBs

It can be observed that the message is accompanied by some contextual information. From left to right, the message also
tells us the simulation time at which the message has been produced, the node id, what object and function is producing
such message, and the logging level. In some cases, the node id may be -1 because here the code is independent by any
node operating in the simulation. Later you will discover that such number will be positive in case the code being executed
is dependent on which node is acting in the simulation, e.g., for a transmission or reception of some packets.

3.1 Program Overview

From what it can be deduced, the demo simulates two downlink Flows, each of them relying on a unicast and uni-
directional communication. Such flows rely on the UDP to carry application data from an origin with IPv4 1.0.0.2 to
two recipients with IPv4 7.0.0.2 and 7.0.0. 3 for Flow I and Flow 2, respectively.

The purpose of this example is to simulate a downlink scenario. Two data flows originate from a remote host, with
specific characteristics. One flow emphasizes low-latency communications, while the other focuses on achieving a higher
throughput. In the provided demo output, it is evident that the former exhibits significantly lower mean delay and jitter
compared to the latter, whereas the opposite is true for the achieved throughput. In the code, the low-latency communi-
cation is referred to as LowLat to indicate its low-latency nature, while the one that achieves higher throughput is referred
to as Voice to reflect the traditional traffic associated with high-quality voice communications.

For this communication, the source is an IPv4 address, specifically 1.0. 0.2, which is referred to as the “remote host.”
The recipients of the data are two UEs.

To support such communications, a 5G Radio Access Network is configured, together with an LTE Core Network, referred
to as the EPC. The entire architecture is defined as 5G NSA.

This demo is characterized by quasi-ideal conditions. For instance, the S1-U link, which interconnects the SGW with the
gNB, has no delay. Furthermore, Direct Path Beamforming is used, which is an ideal algorithm based on the assumption
that the transmitters always know the exact location of the receivers. Further information can be retrieved on the manual,
at Section 2.3.9. Shadowing is not considered, as buildings and any other kind of obstacles that could impair normal
LoS conditions are absent. Finally, the channel model is updated only once, at the start of the simulation, given that the
scenario is static, i.e., it does not change over time.

While both UEs are characterized by a Uniform Planar Array of 2x4 isotropic antenna elements, the gNB has the same
array with a configuration of 4x8.

In terms of spectrum, 2 bands are created to support such communications. The first one operates at 28.0 GHz, while
the second one at 28.2 GHz, both with a bandwidth of 50 MHz. In terms of numerology, i.e., the sub-carrier spacing,
the former is 4, while the latter is 2. This simplifies spectrum allocation, given that each communication will operate on
a dedicated BWP, on a single CC that occupies the entire band, resulting in the spectrum organized as below:

* The configured spectrum division is:

Koo Bandl-————————————— |- Band2-————————————————
Kommm e CCl-————————— | CC2——————————
I BWPl——————————————— | —— - BWP2——————————————————

Given that there is only one gNB, a total transmission power of 35 dBm, which is around 3.16 W, is spread among the
two BWPs.

In terms of the BWP type and bearer, the former communication is configured to use a QCI with NGBR Low Latency, also
known in the code as NGBR_LOW_LAT_EMBB, while the latter has a QCI with GBR and is named as GBR_CONV_VOICE.
A list of other QCI types can be found at the ns-3 doxygen page on QCI.
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On the top of the stack, two UDP applications are used to simulate low-latency voice traffic and high quality one, respec-
tively. In terms of the generated traffic, the former simulates a burst of 100 bytes each 100 us, while the latter generates
packets of 1252 bytes every 100 us. The FlowMonitorHelper is used to gather data statistics about the traffic.

Finally, the EPC’s PGW is then connected to a remote host with an ideal Point-to-Point channel: 100 Gbps of data rate
with 2500 bytes of MTU and no delay.

3.2 References

[cttc-nr-demo] cttc-nr-demo  program. Available at:  https://gitlab.com/cttc-lena/nr/-/blob/master/examples/
cttc-nr-demo.cc
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CHAPTER
FOUR

END-TO-END OBSERVATIONS

We are mainly interested in observing the packet lifecycle as it moves through the RAN stack. We can make a few initial
observations about the packet flow through logging.

Using the following logging-enabled command, it is possible to generate the log information from the UdpClient and
UdpServer objects in the simulation, which simulate the two different types of communications previously mentioned,
and redirect the output to two files, as follows:

$ NS_LOG="UdpClient=info|prefix_time|prefix_node|prefix_func" ./ns3 run 'cttc-nr-demo
—' > log.client.out 2>&1
$ NS_LOG="UdpServer=info|prefix_time|prefix_node|prefix_func" ./ns3 run 'cttc-nr-demo

—'" > log.server.out 2>&l1

Looking at the first couple of lines of the 1og.client.out file, one can see:

+0.400000000s 6 UdpClient:Send(): TraceDelay TX 100 bytes to 7.0.0.2 Uid: 8 Time: +0.
—4s

+0.400000000s 6 UdpClient:Send(): TraceDelay TX 1252 bytes to 7.0.0.3 Uid: 9 Time: +0.
—4s

These first two packets were sent at the same time to two different UEs, from node 6, which identifies the node that
simulates the remote host. Next, observe the first packet arrivals on the UEs via the 1og.server.out file:

+0.400533031s 1 UdpServer:HandleRead(): TraceDelay: RX 100 bytes from 1.0.0.2_
—Sequence Number: 0 Uid: 8 TXtime: +4e+08ns RXtime: +4.00533e+08ns Delay: +533031ns

+0.402582140s 2 UdpServer:HandleRead(): TraceDelay: RX 1252 bytes from 1.0.0.2.
—Sequence Number: 0 Uid: 9 TXtime: +4e+08ns RXtime: +4.02582e+08ns Delay: +2.
—58214e+06ns

The reception times (and packet delays) are quite different. One takes only 533 us to be delivered, while the other takes
2582 us to be delivered. In this tutorial, we will explain why this is so.
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CHAPTER
FIVE

RAN LIFECYCLE

Remote Host / ) gNB UE
( LTE EPC )
k — ) Application/UDP
- ns3::UdpClient
UE NAS
Application/UDP ns3::EpcUeNas
ns3::UdpServer
GTP RRC RRC
ns3::LteEnbRrc ns3::LteUeRrc
UDP
PDCP PDCP
IPv4 Pv4 ns3::LtePdcp ns3::LtePdcp
RLC RLC
ns3::LteRlcUm ns3::LteRlcUm
MAC MAC
ns3::NrGnbMac ns3::NrUeMac
PHY PHY
ns3::NrGnbPhy ns3::NrUePhy
NetDevice NetDevice
ns3::NrGnbNetDevice ns3::NrUeNetDevice

Fig. 5.1: Schematic topology

Fig. 5.1 depicts the objects that each packet will traverse through its lifecycle.

For reference, Fig. 5.2 and Fig. 5.3 are also provided as a map in order to better follow the packet being processed by
each actor of the RAN, i.e., gNB and UE, respectively.

This tutorial will walk through each step of the way, starting with the entry point for these packets in the RAN- the
EpcEnbApplication.

5.1 EpcEnbApplication

The EpcEnbApplication is installed on the gNB. It is responsible for receiving packets tunneled through the EPC
model and sending them into the NrGnbNetDevice. Conceptually, this is just an application-level relay function. It is
possible to run the cttc—nr-demo scenario by enabling the EpcEnbApplication log component, which can also be
configured to print messages at INFO level and prefix the message by stating the time of the simulation, the node ID of
interest, and the routine that prints that message. In this way, with the following command

$ NS_LOG="EpcEnbApplication=info|prefix_all" ./ns3 run 'cttc-nr-demo' > log.out 2>&l1

11
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ns3::NrGnbNetDevice::DoSend() |

Sending IPv4 packet to MAC Address ....

ns3::LteEnbRrc::SendData() |

Sending a packet of ... bytes to
IMSI ..., RNTI ..., BID ...

ns3::UeManager::SendData()

queueing data on PDCP for

transmission over the air

ns3::UeManager::SendPacket() |

ns3::LtePdcpSapProvider::TransmitPdcpSdu() |

| ns3::LtePdcp::DoTransmitPdcpSdu() |

ns3::LteRlc{Am,Tm,Um}::DoTransmitPdcpPdu() |

ns3::LteRIc{Am,Tm,Um}::DoNotifyTxOpportunity() |

| ns3::LteMacSapProvider::TransmitPdu() |

| ns3::NrPhySapProvider::SendMacPdu() |

| ns3::NrPhy::SetMacPdu() |

| ns3::NrPhy::PushFrontSlotAllocinfo() |

| ns3::NrGnbPhy::StartSlot() |

| ns3::NrGnbPhy::DIData() |

| ns3::NrGnbPhy::SendDataChannels() |

ns3::NrSpectrumPhy::StartTxDataFrames() |

v

Fig. 5.2: gNB’s downlink packet processing pipeline
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ns3::NrSpectrumPhy::StartRx()

ns3::NrUePhy::DIData()

ns3::NrUePhy::PhyDataPacketReceived()

ns3::NrUeMac::PhyDataPacketReceived()

ns3::LteRIcUm::DoReceivePdu()

ns3::LtePdcp::DoReceivePdu()

ns3::LteUeRrc::DoReceivePdcpSdu()

ns3::EpcUeNas::DoRecvData()

ns3::NrUeNetDevice::Receive()

!

Fig. 5.3: UE’s downlink packet processing pipeline

5.1. EpcEnbApplication

13



cttc-nr-demo tutorial, Release 3.0

one can observe this relay function on the first packet, as follows:

+0.400000282s 0 EpcEnbApplication:RecvFromSluSocket (): [INFO ] Received packet from.
—S1-U interface with GTP TEID: 2

+0.400000282s 0 EpcEnbApplication:SendToLteSocket (): [INFO ] Add EpsBearerTag with.
—RNTI 2 and bearer ID 2

+0.400000282s 0 EpcEnbApplication:SendToLteSocket (): [INFO ] Forward packet from eNB

—~'s S1-U to LTE stack via IPv4 socket.

The file src/1te/model/epc—enb—application.cc contains the source code.

The EpcEnbApplication adds the cell-specific UE ID (RNTI) and BID as tags through EpsBearerTag. This
greatly simplifies packet processing in later sections. The application is able to find the right RNTI and BID given the
TEID present on the GTP-U header of the received packet structure. This process can be found at EpcEnbApplica-—
tion::RecvFromSluSocket () source code:

GtpuHeader gtpu;

packet->RemoveHeader (gtpu) ;

uint32_t teid = gtpu.GetTeid();

std: :map<uint32_t, EpsFlowId_t>::iterator it = m_teidRbidMap.find(teid);

if (it == m_teidRbidMap.end())

{

NS_LOG_WARN ("UE context at cell id " << m_cellld << " not found, discarding packet

")
m_rxDropSluSocketPktTrace (packet—>Copy());

I3
else

{
m_rxSluSocketPktTrace (packet->Copy ());
SendToLteSocket (packet, it->second.m_rnti, it->second.m_bid);

Notice that the hashmap <uint32_t, EpsFlowId_t> links together a TEID, handled by uint32_t, with RNTI and
BID, grouped by EpsFlowld_t data structure.

The packet and its modifications can be visually represented as shown in Fig. 5.4, where removed portions of the packet
are marked in red, whereas green ones are the added portions.

There is also a byte tag to trace the packet for flow statistics, which are bound to Flow Monitor and are relevant to the
final results that are printed by the scenario.

The new modified packet is finally sent to EpcEnbApplication: :SendToLteSocket (), wWhich distinguishes the
packet to be sent according to its L3 type, in this case IPv4.

As a final remark, the following traces can be used to track incoming and outgoing packets from this application:
* RxFromEnb: Receive data packets from LTE Enb Net Device
¢ RxFromS1lu: Receive data packets from S1-U Net Device
e RxFromSluDrop: Drop data packets from S1-U Net Device
e TxToEnd: Transmit data packets to LTE eNB Net Device

* TxToS1lu: Transmit data packets to S1-U Net Device

14 Chapter 5. RAN lifecycle
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Packet Tags

EpsBearerTag
RNTI BID
Byte Tags

Ipv4FlowProbeTag

Packet Contents

GtpuHeader Ipv4Header UdpHeader | SeqTsHeader | Payload
TEID
Fig. 5.4: Structure of the packet handled by EpcEnbApplication
5.1. EpcEnbApplication 15
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5.1.1 Packet latency

Packets cannot incur latency in the EnbEpcApplication.

5.1.2 Packet drops

Packets can be dropped if there is no association between GTP-U TEID and gNB-UE link’s RNTI and BID.

5.2 NrGnbNetDevice

After the EpcEnbApplication sends a packet, it is immediately received on the NrGnbNetDevice: :DoSend ()
method. We can observe this in the logs:

$ NS_LOG="NrGnbNetDevice=info|prefix_all" ./ns3 run 'cttc-nr-demo' > log.out 2>&1
+0.400000282s 0 NrGnbNetDevice:DoSend(): [INFO ] Forward received packet to RRC Layer
The source code for this method is in the file contrib/nr/model /nr-gnb-net-device.cc. As an aside, notice how
we are bouncing back and forth between the source code directories src/1te/ (for the previous EpcEnbApplication)

and contrib/nr/ (for this object); this is true for the upper layers of the current nr module, which reuse pieces originally
implemented for LTE.

The source code reveals that it is possible to trace the packet via NrNetDevice/Tx.

NrGnbNetDevice does not process the packet, but it just relays it to the RRC layer.

5.2.1 Packet latency

Packets cannot incur latency in the NrGnbNetDevice.

5.2.2 Packet drops

Packets cannot be dropped in the NrGnbNetDevice.

5.3 LteEnbRrc

The RRC layer of the gNB is handled by LteEnbRrc and its companion UeManager, both available in 1te/model/
lte-enb-rrc.cc. While packets incoming from the upper layers are processed by LteEnbRrc: : SendData (), pack-
ets to be sent to UEs are handled by UeManager: : SendPacket () . Indeed, if the simulation is started with the following
command

$ NS_LOG="LteEnbRrc=info|prefix_all" ./ns3 run cttc-nr-demo &> out.log

it produces the following log messages:

16 Chapter 5. RAN lifecycle
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+0.400000282s 0 LteEnbRrc:SendData(): [INFO ] Sending a packet of 128 bytes to IMSI 1,
— RNTI 2, BID 2

+0.400000282s 0 LteEnbRrc:SendData(): [INFO ] queueing data on PDCP for transmission.
—over the air

+0.400000282s 0 LteEnbRrc:SendPacket (): [INFO ] Send packet to PDCP layer

By taking a look at the source code, the RRC layer starts by extracting the RNTI, which is handled by the EpsBearerTag
data structure. Thanks to the RNTI, it is possible to retrieve the corresponding UeManager instance, which keeps track
of the gNB-UE link state through a FSM. The search is done by LteEnbRrc, which uses a hashmap that links each RNTI
to a pointer of the UeManager of interest. Once found, the matching SendData () method is called with the packet’s
BID of reference.

EpsBearerTag tag;

bool found = packet->RemovePacketTag(tagqg);

NS_ASSERT_MSG (found, "no EpsBearerTag found in packet to be sent");
Ptr<UeManager> ueManager = GetUeManager (tag.GetRnti());

ueManager->SendData (tag.GetBid (), packet);

The sendData () method can be quickly understood with the following code excerpt:

switch (m_state)

{

case INITIAL_ RANDOM_ACCESS:

case CONNECTION_SETUP:
NS_LOG_WARN ("not connected, discarding packet");
m_packetDropTrace (p, bid);
return;

case CONNECTED_NORMALLY :

case CONNECTION_RECONFIGURATION:

case CONNECTION_REESTABLISHMENT:

case HANDOVER_PREPARATION:

case HANDOVER_PATH_ SWITCH: ({
NS_LOG_LOGIC ("queueing data on PDCP for transmission over the air");
SendPacket (bid, p);

}

break;

//

}

Let’s ignore the states related to handover, given that in the NR module the X2-U interface is not implemented, yet.

If the UE is ready to receive the packet from the gNB viewpoint, i.e. it’s in CONNECTED_NORMALLY, the SendPacket ()
method is called to continue with the transmission:

LtePdcpSapProvider: :TransmitPdcpSduParameters params;

params.pdcpSdu = p;

params.rnti = m_rnti;

params.lcid = Bid2Lcid (bid);

uint8_t drbid = Bid2Drbid(bid);

// Transmit PDCP sdu only if DRB ID found in drbMap

std: :map<uint8_t, Ptr<LteDataRadioBearerInfo>>::iterator it = m_drbMap.find(drbid);

if (it != m_drbMap.end())

{
Ptr<LteDataRadioBearerInfo> bearerInfo = GetDataRadioBearerInfo (drbid);
if (bearerInfo)

(continues on next page)

5.3. LteEnbRrc 17
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(continued from previous page)

NS_LOG_INFO ("Send packet to PDCP layer");

LtePdcpSapProvider* pdcpSapProvider = bearerInfo->m_pdcp—>
—GetLtePdcpSapProvider () ;

pdcpSapProvider->TransmitPdcpSdu (params) ;

Over there, the packet is processed by creating a PDCP SDU structure with complementary information, known as
LtePdcpSapProvider: : TransmitPdcpSduParameters. These parameters are the RNTI and other two parameters
which are dependent of the BID, such as LCID, which in this case is 4, and DRBID, which is 2. The latter is used to
retrieve the LteDataRadioBearerInfo associated to a DRBID, if it is still in place. At last, the SDU is forwarded to
the active LtePdcpSapProvider through TransmitPdcpSdu ().

With this procedure in mind, it is possible to understand how the packet is modified. If we run the same simulation by
enabling the LteEnbRrc log component, we obtain the following message logs:

+0.400000282s 0 LteEnbRrc:SendData(): [INFO ] Received packet
+0.400000282s 0 LteEnbRrc:SendPacket (): [INFO ] Send packet to PDCP layer

As it can be noticed, packet tags are removed, as the RNTI and BID are transferred to the LtePdcpSap-
Provider::TransmitPdcpSduParameters instance. Byte tags and packet structure remain unaltered.

5.3.1 Packet latency

Packets cannot incur latency in LteEnbRrc.

5.3.2 Packet drops

There may be a chance that the UE is still asking for resources on the RACH, i.e., INITIAL_RANDOM_ACCESS, or there
is still pending set up, i.e., CONNECTION_SETUP. In that case, the packet cannot be transmitted. To this end, it is placed
in the UeManager/Drop trace source and discarded.

5.4 LtePdcp

The LteEnbRrc sends the packet down the stack by referencing a LtePdcpSapProvider. This is an abstract interface
in order to implement any kind of PDCP layer. In this case, the simulation makes use of the implementation provided by
LtePdcp available in 1te/model/lte-pdcp.cc.

The LtePdcp log component can be enabled at INFO level to check out these log messages:

+0.400000282s 0 LtePdcp:DoTransmitPdcpSdu(): [INFO ] Received PDCP SDU
+0.400000282s 0 LtePdcp:DoTransmitPdcpSdu(): [INFO ] Transmit PDCP PDU

According to the LtePdcpSapProvider interface, the internal method used to receive an incoming packet from upper
layers is called DoTransmitPdcpSdu (), which in this case is defined as the following:

Ptr<Packet> p = params.pdcpSdu;

// Sender timestamp
PdcpTag pdcpTag (Simulator: :Now());
(continues on next page)
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LtePdcpHeader pdcpHeader;
pdcpHeader. SetSequenceNumber (m_txSequenceNumber) ;

m_txSequenceNumber++;
if (m_txSequenceNumber > m_maxPdcpSn)
{

m_txSequenceNumber = 0;
pdcpHeader.SetDcBit (LtePdcpHeader: :DATA_PDU) ;
NS_LOG_LOGIC ("PDCP header: " << pdcpHeader);
p->AddHeader (pdcpHeader) ;
p—>AddByteTag (pdcpTag, 1, pdcpHeader.GetSerializedSize());
m_txPdu(m_rnti, m_lcid, p->GetSize());
LteRlcSapProvider: :TransmitPdcpPduParameters txParams;
txParams.rnti = m_rnti;
txParams.lcid = m_lcid;

txParams.pdcpPdu = p;

m_rlcSapProvider—>TransmitPdcpPdu (txParams) ;

(continued from previous page)

As it can be observed, a PDCP packet tag, identified by PdcpTag, and its header, represented by LtePdcpHeader,
are created and attached to the SDU. The former stores the current simulation time and the latter is set with a specified
sequence number and a D/C bit. While the sequence number is locally tracked through the m_txSequenceNumber
property, the D/C bit is set to DATA_PDU to indicate that this is a data packet and not a control one. This change can be

visually represented as Fig. 5.5.

Finally, the packet is forwarded to the RLC layer through LteRlcSapProvider: :TransmitPdcpPdu (), by pro-
viding some additional parameters to the PDCP PDU, such as the RNTI and the LCID, under the LteRlcSap-—

Provider: :TransmitPdcpPduParameters structure.

5.4.1 Packet latency

Packets cannot incur latency in the LtePdcp.

5.4. LtePdcp
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Packet Tags
N/A

Byte Tags

PdcpTag

Packet Contents

LtePdcpHeader

Fig. 5.5: Structure of the PDCP PDU processed by LtePdcp. Green blocks are added at the PDCP layer, while blue
ones represent unchanged structure.

5.4.2 Packet drops

Packets cannot be dropped in the LtePdcp.

5.5 LteRIcUm

Following the same design of LtePdcpSapProvider template class and its implementation LtePdcp, the RLC layer
is based on the same class structure. Here, the LteR1cSapProvider is a template class where multiple implementa-
tions of the RLC can be defined. On ns-3, the RLC layer is implemented by LteR1cAm, LteRlcTm, and LteR1cUm,
according to how the PDCP PDU is transferred to the UE, if on Acknowledged Mode (AM), Transparent Mode (TM),
or Unacknowledged Mode (UM), respectively. For this simulation, the LteR1cUm is adopted, which is implemented in
lte/model/lte-rlc-um.cc.

If the LteR1cUm log component is enabled at INFO level, it produces the following log messages:

+0.400000282s 0 LteRlcUm:DoTransmitPdcpPdu(): [INFO ] Received RLC SDU
+0.400000282s 0 LteRlcUm:DoTransmitPdcpPdu(): [INFO ] New packet enqueued to the RLC.
—Tx Buffer

As it can be deduced, the RLC SDU is received at Lt eR1cUm: : DoTransmitPdcpPdu (), with its implementation that
is:

if (m_txBufferSize + p->GetSize() <= m_maxTxBufferSize)
{
if (m_enablePdcpDiscarding)
// Ignored, as this flag is false by default

/** Store PDCP PDU */
TteRIcsduStatusTag tag; ;

20 .g.setStatus(LteRlcSduStatusTag: :FULL_SDU) ; Chapter 5. RAN lifecycle
p—>AddPacketTag(tag) ;

NS_LOG_INFO ("New packet enqueued to the RLC Tx Buffer");
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The packet is then appended to a buffer called m_txBuffer, which is a vector<TxPdu>, where TxPdu is a structure
containing (i) a pointer to the packet, and (ii) the time when the packet has been added to the buffer, as dictated by the
Simulator: :Now () callinm_txBuffer.emplace_back () instruction.

At the end of the procedure, DoReportBufferStatus () is called to alert the queue size at the MAC layer, handled
by LteMacSapProvider. The buffer report focuses on reporting the queue size and its HOL delay, together with the
RNTTI and LCID of reference, as it can be noticed by the following excerpt of the said method:

Time holDelay (0);
uint32_t queueSize = 0;

if (!m_txBuffer.empty())
{

holDelay = Simulator::Now() - m_txBuffer.front().m_waitingSince;

queueSize =
m_txBufferSize + 2 * m_txBuffer.size(); // Data in tx queue + estimated.
—headers size

}

LteMacSapProvider: :ReportBufferStatusParameters r;

r.rnti = m_rnti;

r.lcid = m_lcid;

r.txQueueSize = queueSize;

r.txQueueHolDelay = holDelay.GetMilliSeconds () ;

r.retxQueueSize = 0;

r.retxQueueHolDelay = 0O;

r.statusPduSize = 0;

NS_LOG_LOGIC ("Send ReportBufferStatus = " << r.txQueueSize << ", " << r.

—txQueueHolDelay) ;
m_macSapProvider->ReportBufferStatus (r);

There is no mention of the actual m_t xBuf fer, which is kept at the RLC layer, until a transmission opportunity is found at
the MAC layer, for which there is an upcall to Lt eR1cUm: : DoNot i fyTxOpportunity () done by the MAC scheduler.
Indeed, the INFO log messages suggest that the buffer acquires two RLC SDUs before a transmission opportunity takes
place:

+0.400000282s 0 LteRlcUm:DoTransmitPdcpPdu(): [INFO ] Received RLC SDU

+0.400000282s 0 LteRlcUm:DoTransmitPdcpPdu(): [INFO ] New packet enqueued to the RLC.

—Tx Buffer

+0.400002262s 0 LteRlcUm:DoTransmitPdcpPdu(): [INFO ] Received RLC SDU

+0.400002262s 0 LteRlcUm:DoTransmitPdcpPdu(): [INFO ] New packet enqueued to the RLC.

—Tx Buffer

+0.400062500s 0 LteRlcUm:DoNotifyTxOpportunity(): [INFO ] RLC layer 1is preparing data.
—for the following Tx opportunity of 36 bytes for RNTI=2, LCID=4, CCID=0, HARQ ID=15,
— MIMO Layer=0

The LteR1cUm: :DoNotifyTxOpportunity () prepares the data to transmit in the following way:

if (txOpParams.bytes <= 2)

{
// Stingy MAC: Header fix part is 2 bytes, we need more bytes for the data
NS_LOG_INFO("TX opportunity too small — Only " << txOpParams.bytes << " bytes");
return;

Ptr<Packet> packet = Create<Packet>();
(continues on next page)
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(continued from previous page)
LteRlcHeader rlcHeader;

// Build Data field
uint32_t nextSegmentSize = txOpParams.bytes - 2;
//

First of all, the opportunity window size is checked to ensure that we have more than two bytes, given that the MAC
header requires that size. Next, an empty packet is created, called packet. Such packet must be equivalent to the
size of the transmission opportunity, for which the variable next SegmentSize is used to understand how much data
contained in m_txBuffer can be transferred. In this case, we can transfer up to 34 bytes, which is the result of the
txOpParams.bytes, set at 36 bytes, minus 2 bytes due to the MAC header size.

Ptr<Packet> firstSegment = m_txBuffer.begin()->m_pdu->Copy () ;

Time firstSegmentTime = m_txBuffer.begin()->m_waitingSince;
/).
while (firstSegment && (firstSegment->GetSize() > 0) && (nextSegmentSize > 0))

{
if ((firstSegment->GetSize () > nextSegmentSize) ||
// Segment larger than 2047 octets can only be mapped to the end of the.
—Data field
(firstSegment->GetSize () > 2047))

// The packet 'firstSegment' must be fragmented to fit in our segment being.
—prepared for MAC TX
}
else if ((nextSegmentSize - firstSegment->GetSize() <= 2) || m_txBuffer.empty())
{
// If the packet fits the segment and there are no other packets to TX, just.
—add it without fragmenting it
}
else // (firstSegment->GetSize () < m_nextSegmentSize) && (m_txBuffer.size () > 0)
{
// If there are still other packets to TX, add the current packet
— 'firstSegment' and update nextSegmentSize

}

From the head of m_txBuffer, the first RLC SDU is taken and it is called £irstSegment, together with its waiting
time. Until we have space for the transmission opportunity, tracked by next Segment Size, the while loop is executed.

Of course, if the firstSegment is too big to fit in the transmission opportunity, it is fragmented. The LteR1cSdus-
tatusTag is then updated to check if the fragment is the FIRST_SEGMENT, MIDDLE_SEGMENT, or LAST_SEGMENT,
according to how many parts the packet is fragmented. Fragments that do not fit the opportunity window size are in-
serted back to the head of m_txBuffer. If such fragment is not the last, the RLC Header DATA_FIELD_FOLLOWS bit
is set to alert that this packet does not contain the entire PDCP packet. This will be useful to schedule new transmission
opportunities in the future and ensure correct packet integration.

There are other cases that could happen, which are handled by the conditional clause inside the while loop. If there is only
one packet left in the buffer and it fits the current segment, it is just placed to the segment. Furthermore, if there is still
more space left on the segment and other packets are waiting in the m_t xBuf fer, the current packet firstSegment is
placed in the segment and the left space, tracked by next SegmentSize, is evaluated to add a new packet in the segment
at the next while loop iteration.

This operation can be better visualized by observing Fig. 5.6.
where the “Hdr” that precedes the MAC SDU fragment is the subheader according to 3GPP TS 38.321.

After the fragmentation procedure, the RLC header, handled by LteR1cHeader data structure, is set up. The sequence
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PoC? .

RLC | Hdr | RLC SDU | | Hdr | RLC SDU | | Hdr | RLC SDU |
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< > < > —

MAC PDU: Transport Block

Fig. 5.6: Overview of how the packets buffered by the RLC layer are combined to prepare a segment with a size equal to
the transmission opportunity granted at the MAC layer

number is set and kept track via the local property m_sequenceNumber. Moreover, the framing information is set to
declare if the last byte of the segment corresponds or not to the end of a RLC SDU. Finally, a R1cTag byte tag is added
and linked to the RLC header, which saves the current simulation time.

It is possible to enable INFO log messages to understand when the packet is sent to the MAC:

+0.400062500s 0 LteRlcUm:DoNotifyTxOpportunity(): [INFO ] Forward RLC PDU to MAC Layer

Once the RLC PDU is readys, it is pushed to the MAC SAP through the TransmitPdu () interface method, together
with the RNTI, LCID, CCID, HARQ ID, and MIMO layer.

5.5.1 Packet latency

Packets do incur latency in LteR1cUm, and in the RLC layer in general, according to when the transmission opportunities
take place and how much large is the buffer. A small buffer may improve latency on one hand, at the cost of risking the
event of a full transmission buffer, which causes packet drops.

5.5.2 Packet drops

Packets can be dropped if the RLC buffer m_txBuffer is full, or the m_enablePdcpDiscarding is enabled, which
analyzes timing budget and conditions of the RLC SDU and may drop it.

5.6 NrGnbMac

The NrGnbMac, available in nr/model/nr-gnb-mac. cc, implements the MAC SAP for NR communications.

If we enable the NrGnbMac log component at INFO level, it is possible to see the connection initialization with the UEs,
both in terms of RACH communication and RNTI allocation:

+0.016125000s O [ CellId 2, bwpId 0] NrGnbMac:DoSlotDlIndication(): [INFO ].

—Informing MAC scheduler of the RACH preamble for RAPID 1 in slot FrameNum: 1.

—SubFrameNum: 6 SlotNum: 4; Allocated RNTI: 1

+0.016125000s O [ CellId 2, bwpId 0] NrGnbMac:DoSlotDlIndication(): [INFO ].

—Informing MAC scheduler of the RACH preamble for RAPID 0 in slot FrameNum: 1.

—SubFrameNum: 6 SlotNum: 4; Allocated RNTI: 2

+0.016125000s O [ CellId 2, bwpId 0] NrGnbMac:SendRar(): [INFO ] In slot FrameNum: 1.

—SubFrameNum: 6 SlotNum: 2 send to PHY the RAR message for RNTI 1 rapId 1

+0.016125000s O [ CelllId 2, bwpId 0] NrGnbMac:SendRar(): [INFO ] In slot FrameNum: 1.
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(continued from previous page)

At first glance, it is possible to note that these logs present two key information, i.e., Ce111d and bwpId. These can be
used as contextual information to better follow the traffic served by a certain cell on a BWP. To learn more how these IDs
work, please refer to Section 2.2 of the NR manual.

Once the RLC transmission buffer is updated, the NrGnbMac: :DoReportBufferStatus () intermediates with the
MAC scheduler SAP to report the buffer status:

+0.400000282s O [ CellId 2, bwpId 0] NrGnbMac:DoReportBufferStatus(): [INFO ].
—Reporting RLC buffer status update to MAC Scheduler for RNTI=2, LCID=4,.
—~Transmission Queue HOL Delay=0, Transmission Queue Size=132, Retransmission Queue.
—HOL delay=0, Retransmission Queue Size=0, PDU Size=0

+0.400002262s O [ CellId 3, bwpId 1] NrGnbMac:DoReportBufferStatus(): [INFO ].
—Reporting RLC buffer status update to MAC Scheduler for RNTI=1, LCID=4,.
—Transmission Queue HOL Delay=0, Transmission Queue Size=1284, Retransmission Queue._
—HOL delay=0, Retransmission Queue Size=0, PDU Size=0

By following these messages it is possible to track the Transmission Queue Size, which is filled by incoming
RLC PDUs and emptied by the scheduled transmissions. By default, the NrHe1per considers the TDMA RR as MAC
Scheduler for this example, handled by NrMacSchedulerTdmaRR. Schedulers are extensively covered in both the NR
manual, Sections 2.5.2 and 2.5.3, and the doxygen documentation.

The MAC layer receives scheduled allocations with the call to NrGnbMac: :DoSchedConfigIndication (). All the
scheduler parameters are packed in a NrMacSchedSapUser: : SchedConfigIndParameters structure. Among these
parameters, the HARQ Process ID is critical to fully trace (i) when an allocation is scheduled, (ii) when a frame is
transmitted, and (iii) when the UE ACKs the correct reception of the frame. These are critical information that helps also
evaluate the packet latency in this layer.

For instance, let’s take a look at these INFO log messages, focusing the attention on finding correspondences with the
HARQ Process ID:

+0.400062500s O [ CellId 2, bwpId 0] NrGnbMac:DoSchedConfigIndication(): [INFO ] New.
—scheduled data TX in DL for HARQ Process ID: 15, Var. TTI from symbol 1 to 13. 1.
—TBs of sizes [ 39 ] with MCS [ 0 ]

+0.400062500s O [ CellId 2, bwpId 0] NrGnbMac:DoSchedConfigIndication(): [INFO ]._
—Notifying RLC of TX opportunity for HARQ Process ID 15 LC ID 4 stream 0 size 36._
—bytes

+0.400062500s O [ CellId 2, bwpId 0] NrGnbMac:DoTransmitPdu(): [INFO ] Sending MAC.

—PDU to PHY Layer

+0.400374995s 0 [ CellId 2, bwpId 0] NrGnbMac:DoDlHargFeedback(): [INFO ] HARQ-ACK.
—UE RNTI 2 HARQ Process ID 15 Stream ID 0

From the first message we can observe that a new transmission of just one stream of 39 bytes is scheduled for transmission.
Consequently, from the second log message the MAC notifies this opportunity to the RLC layer. After that, the MAC
PDU is prepared. After a while, the ACK from the UE arrives. This means that the frame took 312 us to be sent and
acknowledged.

Here the RLC PDU is made and forwarded to the MAC layer by calling its TransmitPdu () method, which in this case
is implemented by NrGnbMac: :DoTransmitPdu (). At the end of packet encapsulation, the PDU is forwarded to the
PHY SAP, along with its SfnSf and the starting symbol index as indicated in the DCI, shown in the log messages as Var.
TTI from symbol 1 to 13. Tolearn more how a variable TTI works, please refer to Section 2.5.1 of the NR manual.

Furthermore, observe how the TB size is larger for BWP with ID 1:
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+0.400250000s O [ CellId 3, bwpId 1] NrGnbMac:DoSchedConfigIndication(): [INFO ] New.
—scheduled data TX in DL for HARQ Process ID: 15, Var. TTI from symbol 1 to 13. 1.
—TBs of sizes [ 171 ] with MCS [ 0 ]

+0.401499997s O [ CelllId 3, bwpId 1] NrGnbMac:DoDlHargFeedback(): [INFO ] HARQ-ACK.
—UE RNTI 1 HARQ Process ID 15 Stream ID 0

but the latency has increased to 1,249 us.

5.6.1 Packet latency

Packets do incur latency in NrGnbMac, as they can be left in the buffer until a successful HARQ ACK is received from
the UE. Furthermore, there is a difference in latency, depending on the BWP configuration.

5.6.2 Packet drops

Packets cannot be dropped in NrGnbMac.

5.7 NrGnbPhy

NrGnbPhy tailors the NrPhy according to how the gNB should behave at its PHY layer. Its implementation can be
found in model/nr-gnb-phy.cc, model/nr-phy.cc, and model/nr-phy-mac-common.cc. The PHY layer is
extensively covered in Section 2.3 of the NR manual. Furthermore, there is more technical description on how it works
at the doxygen of NrGnbPhy and doxygen of NrPhy classes.

This simulation is configured by enabling both NrGnbPhy and NrPhy log components:

$ NS_LOG="NrGnbPhy=info|prefix_all:NrPhy=info|prefix_all" ./ns3 run cttc-nr-demo &>.
—out.log

At the start of the simulation, the PHY layer is configured. As we are in a TDD context, its pattern is set. Furthermore,
according to the bandwidth available, the number of RBs per BWP is set. Finally, the channel access is requested and
obtained. Given the simplicity of this simulation, the channel is granted for a long time, but take into account that it is
released as soon as the gNB does not use it for data transmission. All this information can be obtained in the following
log messages:

+0.000000000s -1 [ CellId 0, bwpId 65535] NrGnbPhy:SetTddPattern(): [INFO ] Set.
—pattern : FIF|F|F|F|F|F|F|F|F]

+0.000000000s -1 [ CellId 0, bwpId 0] NrPhy:DoUpdateRbNum(): [INFO ] Updated RbNum.
—~to 16

+0.000000000s -1 [ CellId 0, bwpId 1] NrPhy:DoUpdateRbNum(): [INFO ] Updated RbNum.
—~to 66

+0.000000000s -1 [ CellId 2, bwpId 0] NrPhy:DoUpdateRbNum(): [INFO ] Updated RbNum.
—~to 6

+0.000000000s -1 [ CellId 2, bwpId 0] NrPhy:DoUpdateRbNum(): [INFO ] Updated RbNum.
—~to 6

+0.000000000s O [ CellId 2, bwpId 0] NrGnbPhy:StartSlot(): [INFO ] Channel not.
—granted, request the channel

+0.000000000s O [ CellId 2, bwpId 0] NrGnbPhy:ChannelAccessGranted(): [INFO ].

—Channel access granted for +9.22337e+18ns, which corresponds to 147573952589675.
—slot in which each slot is +62500ns. We lost +62500ns

(continues on next page)
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(continued from previous page)

+0.000062500s O [ CellId 2, bwpId 0] NrGnbPhy:EndSlot(): [INFO ] Release the channel.
—because we did not have any data to maintain the grant

The F in the TDD pattern means that for each TDD slot it will be possible to handle any type of frame, from DL to UL,
which can be of CTRL or DATA type. More information can be found in the NR doxygen regarding the LteNrTddSlotType.

The gNB’s PHY layer receives the MAC PDU through the NrPhy : : SetMacPdu () method. First of all, the numerology
is checked to understand if the PHY is working at that numerology at the moment. If such condition is true, the PDU is
appended to a ns3: :PacketBurst object, which is an abstraction to a list of packets. Such list is mapped to contextual
information, which is composed by the stream ID and starting symbol.

Indeed, it is possible to notice this INFO log message, which signals the MAC PDU entrance in this layer, along with its
properties, such as SfnSf (used to keep track of the frame, subframe, and slot number) and starting symbol:

+0.400125000s O [ CellId 2, bwpId 0] NrPhy:SetMacPdu(): [INFO ] Adding a packet for.
—the Packet Burst of FrameNum: 40 SubFrameNum: 0 SlotNum: 4 at sym 1

As the timeslot order is handled by the scheduler, the transmission is led by an event loop, which calls
NrGnbPhy::StartSlot () and queries the packet burst through NrPhy: :PushFrontSlotAllocInfo (). Packets
are finally transmitted over the air via D1Data (), which then interacts with the spectrum through SendbataChan—
nels (). Upon the same logic, packets are received from UlData () and PhyDataPacketReceived ().

From this point onwards, the NrGnbPhy interacts with NrSpectrumPhy: : StartTxDataFrames (), which acts as an
interface between the gNB PHY layer and the channel. NrSpect rumPhy acts as a state machine to know what the PHY
layer (at the BWP of interest) is currently doing, from transferring/receiving data or control information or it is in idle
state. Once a packet burst is given with its related set of control messages and duration of transmission, the structure
NrSpectrumSignalParameterDataFrame is created. This object contains the aforementioned information, plus the
cell identifier (GetCel111d () ) and the transmission PSD. Such information is then forwarded to the channel.

The log messages are quite verbose but in a constant pattern until there is data to transmit. Indeed, it is possible to notice
these log messages once data arrive at the PHY layer:

+0.400187500s O [ CellId 2, bwpId 0] NrGnbPhy:RetrieveDciFromAllocation(): [INFO ].
—~Send DCI to RNTI 2 from sym 1 to 13

+0.400187500s O [ CelllId 2, bwpId 0] NrGnbPhy:FillTheEvent (): [INFO ] Scheduled.
—allocation RNTI=0|DL|SYM=0|NSYM=1|TYPE=2|BWP=0|HARQP=0|RBG=[0;15] at +0Ons
+0.400187500s O [ CellId 2, bwpId 0] NrGnbPhy:FillTheEvent (): [INFO ] Scheduled.
—allocation RNTI=2|DL|SYM=1|NSYM=12|McsStream0=0|TBsStream0=39|NdiStream0O=1|RvS
tream0=0|TYPE=1|BWP=0 | HARQP=15|RBG=[0; 15] at +4464ns

+0.400187500s O [ CellId 2, bwpId 0] NrGnbPhy:FillTheEvent (): [INFO ] Scheduled.
—allocation RNTI=0|UL|SYM=13|NSYM=1|TYPE=2|BWP=0|HARQP=0|RBG=[0;15] at +58032ns
+0.400191964s 0 [ CellId 2, bwpId 0] NrGnbPhy:DlData(): [INFO ] ENB TXing DL DATA..
—frame FrameNum: 40 SubFrameNum: 0 SlotNum: 3 symbols 1-12 start +4.00192e+08ns end.
—+4.00246e+08ns

+0.400250000s O [ CellId 3, bwpId 1] NrGnbPhy:EndSlot(): [INFO ] Release the channel..
—because we did not have any data to maintain the grant

Here the NrGnbPhy: :FillTheEvent () scheduled the Variable TTI in the simulator as events. The first scheduled
information sends one symbol of control information in DL to the UE; the second one sends is the data TB, whereas the
third one is to receive in UL the ACK from the UE.
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5.7.1 Packet latency

At this layer each packet will get latency based on different features that characterize NR. For instance, the processing
times affect packet latency and it is parametrized by L1L2Ctr1Latency in timeslots. This parameter is hardcoded to 2,
which indicates that the allocation requires two timeslots before seeing the packet going in the air. Furthermore, latency
may be impacted by NR processing delays. Specifically, setting NODelay and consequently KO to a value greater than O
will result in additional latency. For further information, please refer to Section 2.5.6 of the NR manual.

It can be noticed that the packet gained 0.19 ms of latency by reaching the time scheduled for transmission and the total
transmission of the data of interest requested 54 us.

5.7.2 Packet drops

Packets cannot be dropped in the NrGnbPhy, but they may be dropped in NrSpect rumPhy upon their reception if they
are found to be corrupted. Whether the packet is corrupted is evaluated in NrSpectrumPhy by calling the function
NrErrorModel: :GetTbDecodificationStats () which takes into account the HARQ history (used for the HARQ
model being configured for this simulation, i.e., Chase Combining or Incremental Redundancy.)

5.8 NrUePhy

The other end of the channel, which in this case is the UE, is implemented by NrUePhy, available at model/nr/nr-
ue-phy . cc. The log components can be enabled and correlated to that of the gNB to evaluate what happens at the PHY
layer:

$ NS_LOG="NrGnbPhy:NrUePhy" ./ns3 run cttc-nr-demo &> out.log

The following log excerpt can be analyzed:

+0.000000000s 1 [ CellId 2, bwpId 0] NrUePhy:StartEventLoop(): [INFO ] PHY starting..
—Configuration:

TxPower: 2 dBm

NoiseFigure: 5

TbDecodeLatency: 100 us

Numerology: 4

SymbolsPerSlot: 14

Pattern: F|F|FI|F|F|F|F|FI|F|F|
Attached to physical channel:

Channel bandwidth: 18000000 Hz

Channel central freq: 2.8e+10 Hz

Num. RB: 6

+0.400191964s 1 [ CellId 2, bwpId 0] NrUePhy:DlData(): [INFO ] UE2 HARQ ID 15 stream.
—0 RXing DL DATA frame for symbols 1-12 num of rbg assigned: 16. RX will take place._
—for +53568ns

+0.400245531s 1 [ CelllId 2, bwpId 0] NrUePhy:GenerateDlCgiReport (): [INFO ] Stream 0.
—WB CQI 15 avrg MCS 28 avrg SINR (dB) 66.8459

+0.400245531s 1 [ CellId 2, bwpId 0] NrUePhy:NotifyDlHargFeedback(): [INFO ] HARQ.
—Feedback for ID 15 Stream 0

+0.400767857s 2 [ CellId 3, bwpId 1] NrUePhy:DlData(): [INFO ] UEl HARQ ID 19 stream.
—0 RXing DL DATA frame for symbols 1-12 num of rbg assigned: 66. RX will take place._
—for +214284ns

(continues on next page)
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+0.400982140s 2 [ CellId 3, bwpId 1] NrUePhy:GenerateDlCgiReport (): [INFO ] Stream O._
—WB CQI 15 avrg MCS 28 avrg SINR (dB) 65.9225

+0.400982140s 2 [ CellId 3, bwpId 1] NrUePhy:NotifyDlHargFeedback(): [INFO ] HARQ..
—Feedback for ID 15 Stream O

At the start of the simulation, an instance of NrUePhy is initialized for each UE and BWP ID. So in total we get 4 messages
like this. It is clear how PHY is configured with the listed parameters, which can be useful to track and understand how
traffic behaves at further points in the log file, by just looking at the message prefix [ CellId 2, bwpId 0].

It can be also observed that data is RX by different UE PHYs, with different BWP ID. While the first one is receiving the
traffic for the low latency application, the second one is receiving traffic for the high-quality voice. It is clear the difference
in the number of RBs assigned and delay needed for the data transfer.

After a frame is received completely, i.e., the packet burst is copied from the transmitter PHY to the receiver one, the
corresponding CQI report is computed. For this reason NrUePhy: : GenerateD1CqgiReport () prints a log message
that reports useful statistics for the last frame received, especially the average MCS and SINR. The computed SINR can
be also tracked through the D1DataSinr trace.

Finally, the HARQ feedback can be tracked through NrUePhy: :NotifyDlHargFeedback () to fully understand its
lifecycle after frame reception.

Even though it is possible to track the lifecycle of the packet in NrUePhy, the NrSpectrumPhy contains all the actual
logic that allows the evaluation of the TB SINR and TBLER and finally decides if the TB gets corrupted during the re-
ception. Such decision can be seen in model/nr-spectrum-phy.cc at NrSpectrumPhy: : EndRxData () method.
The TBLER is evaluated by the NrLteMiErrorModel. If the TBLER is less than the realization of a Uni formRan—
domVariable between O and 1, the TB is marked as corrupted. This implies that a NACK is sent as HARQ status.

TB reception can be observed by enabling the corresponding log component and filter by EndRxData:

$ NS_LOG="NrSpectrumPhy=info|prefix_all"™ ./ns3 run cttc-nr-demo | grep EndRxData >.
—output.log

obtaining log messages such as this:

+0.400245531s 1 NrSpectrumPhy:EndRxData(): [INFO ] Finishing RX, sinrAvg=4.83716e+06_
—sinrMin=3.60456e+06 SinrAvg (dB) 66.8459

5.8.1 Packet latency

The same logic of NrGnbPhy applies, as the frame requires the given duration for its transfer from the gNB to the UE.

5.8.2 Packet drops

Upon the same logic of NrGnbPhy and the corresponding NrSpect rumPhy, the TBs dropped by NrSpect rumPhy on
UE side cause a HARQ feedback at this layer in order to repeat the transmission.
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5.9 NrUeMac

The NrUeMac is implemented in model/nr-ue-mac.cc. The NrUeMac receives notification on the availability of new
MAC frames from PHY layer through its DoReceivePhyPdu () callback. Indeed, if we enable the component log like
the following

$ NS_LOG="NrUeMac=info|prefix_all" ./ns3 run cttc-nr-demo

we get the following information:

+0.016316963s 1 [ CellId 2, bwpId 0, rnti 0] NrUeMac:DoReceiveControlMessage () :.
— [INFO ] Received RAR in slot FrameNum: 1 SubFrameNum: 6 SlotNum: 5
+0.016316963s 2 [ CellId 2, bwpId 0, rnti 0] NrUeMac:DoReceiveControlMessage () :_
— [INFO ] Received RAR in slot FrameNum: 1 SubFrameNum: 6 SlotNum: 5
+0.400345531s 1 [ CelllId 2, bwpId 0, rnti 2] NrUeMac:DoReceivePhyPdu(): [INFO ].
—Received PHY PDU from LCID 4 of size 81 bytes.

+0.400671427s 1 [ CellId 2, bwpId 0, rnti 2] NrUeMac:DoReceivePhyPdu(): [INFO ].
—~Received PHY PDU from LCID 4 of size 185 bytes.

+0.401082140s 2 [ CellId 3, bwpId 1, rnti 1] NrUeMac:DoReceivePhyPdu(): [INFO ].
—~Received PHY PDU from LCID 4 of size 345 bytes.

+0.402582140s 2 [ CelllId 3, bwpId 1, rnti 1] NrUeMac:DoReceivePhyPdu(): [INFO ].

—Received PHY PDU

from LCID 4 of size 12065 bytes.

It is evident the amount of data being received by both BWPs. Finally, the MAC SDU is prepared by just removing the
MAC header from its PDU and forwarded to the LTE RLC layer.

5.9.1 Packet latency

We can cross-check what has been transmitted by NrGnbMac and what has been received here. An example by enabling
both log components is provided hereby

$ NS_LOG="NrGnbMac=info|prefix_all:NrUeMac=info|prefix_all" ./ns3 run cttc-nr-demo

If we filter the output only to track the first 3 TBs sent by each BWP, we obtain the following log messages:

+0.400062500s O [ CellId 2, bwpId 0] NrGnbMac:DoSchedConfigIndication(): [INFO ].
—Notifying RLC of TX opportunity for HARQ Process ID 15 LC ID 4 stream 0 size 39.
—Dbytes

+0.400125000s O [ CellId 2, bwpId 0] NrGnbMac:DoSchedConfigIndication(): [INFO ].
—Notifying RLC of TX opportunity for HARQ Process ID 14 LC ID 4 stream 0 size 39.
—Dbytes

+0.400187500s O [ CellId 2, bwpId 0] NrGnbMac:DoSchedConfigIndication(): [INFO ].
—Notifying RLC of TX opportunity for HARQ Process ID 13 LC ID 4 stream 0 size 39.
—bytes

+0.400250000s O [ CellId 3, bwpId 1] NrGnbMac:DoSchedConfigIndication(): [INFO ].
—Notifying RLC of TX opportunity for HARQ Process ID 15 LC ID 4 stream 0 size 171.
—Dbytes

+0.400345531s 1 [ CellId 2, bwpId 0, rnti 2] NrUeMac:DoReceivePhyPdu(): [INFO ].
—~Received PHY PDU from LCID 4 of size 39 bytes.

+0.400408031s 1 [ CelllId 2, bwpId 0, rnti 2] NrUeMac:DoReceivePhyPdu(): [INFO ].
—~Received PHY PDU from LCID 4 of size 39 bytes.

+0.400470531s 1 [ CellId 2, bwpId 0, rnti 2] NrUeMac:DoReceivePhyPdu(): [INFO ]._

—Received PHY PDU from LCID 4 of size 39 bytes.

(continues on next page)
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+0.400500000s O [ CellId 3, bwpId 1] NrGnbMac:DoSchedConfigIndication(): [INFO ]._
—Notifying RLC of TX opportunity for HARQ Process ID 14 LC ID 4 stream 0 size 171.
—bytes
+0.400750000s O [ CellId 3, bwpId 1] NrGnbMac:DoSchedConfigIndication(): [INFO ]._
—Notifying RLC of TX opportunity for HARQ Process ID 13 LC ID 4 stream 0 size 171.
—bytes

+0.401082140s 2 [ CellId 3, bwpId 1, rnti 1] NrUeMac:DoReceivePhyPdu(): [INFO ]._
—Received PHY PDU from LCID 4 of size 171 bytes.
+0.401332140s 2 [ CellId 3, bwpId 1, rnti 1] NrUeMac:DoReceivePhyPdu(): [INFO ].
—~Received PHY PDU from LCID 4 of size 171 bytes.
+0.401582140s 2 [ CelllId 3, bwpId 1, rnti 1] NrUeMac:DoReceivePhyPdu(): [INFO ].

—~Received PHY PDU from LCID 4 of size 171 bytes.

It is possible to observe that in ~1,519.64 us, on the one hand, 243 bytes were correctly sent to the UE for the first BWP,
whereas 513 bytes were sent for the second BWP. On the other hand, the first BWP took only ~283 us on average to
transmit these TBs, while the second BWP took ~832 us. This aspect greatly highlights the trade-off that is taking place
upon choosing the different BWPs.

5.9.2 Packet drops

Packets may be dropped by NrUeMac if the RNTI does not match with the expected one.

5.10 LteRlcUm - UE Side

When the RLC PDU is received at LteR1cUm: : DoReceivePdu (), its header is removed. Its packet sequence number
is checked to verify if (i) the data need reordering, (ii) the data is a duplicate of a previous one, and (iii) it has been
received outside the reordering window. To fully understand this logic, please refer to Section 5.1.2.2 of the LTE RLC
protocol specification.

Once the SDU is reassembled correctly from the received PDUs, LteR1cUm: : ReassembleAndDeliver () sends the
packet up to the PDCP layer.

5.10.1 Packet latency

The delay at RLC layer can be tracked with the RxPdu trace. At the same time, it is possible to enable the LteR1cUm
log component and filter by the LteR1cUm: : DoReceivePdu () messages. It can be noticed that, for the low latency
voice, the packets have an average latency of 234 us, whereas the high quality voice has 681 us. This data can be easily
extracted with the following two commands:

$ grep 'l LteRlcUm:DoReceivePdu' output.log | \

grep —-oP '[0-9]+ (?=ns)"' | \

awk '{ total += $1; count ++ } END { print total/count/le3 }'
233.976
$ grep '2 LteRlcUm:DoReceivePdu' output.log | \

grep -oP '[0-9]+(?=ns)' | \

awk '{ total += $1; count ++ } END { print total/count/le3 }'
680.866

At the same time, the aforementioned commands can be easily adapted to report the average bytes transmitted per packet.
For the former, it is 132 bytes, while for the latter, 3210.
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5.10.2 Packet drops

The RLC PDU is dropped if it was already received or its sequence number falls outside the reordering window, as per
Section 5.1.2.2 of the LTE RLC protocol specification.

5.11 LtePdcp - UE Side

Like what we have seen at RLC layer, the incoming PDCP PDUs are received at Lt ePdcp: : DoReceivePdu () method.
The header is removed and the packet is then transmitted to the Lt eUeRrc, which straightly pass the packet to EpcUeNas
and then NrUeNetDevice.

5.11.1 Packet latency

Latency can be evaluated with the same method used for Section 5.10.1. LteUeRrc and EpcUeNas acts transparently
and do not add any additional latency.

5.11.2 Packet drops

Packets cannot be dropped at this layer, neither at RRC and UE NAS.

5.12 NrUeNetDevice

The packet is received by the EpcUeNas to NrUeNetDevice: :DoRecvData () which does an up-callback to NrUeNet -
Device: :Receive (). The implementation of such callback is the same for both UE and gNB, and thus it can be found
in NrNetDevice,i.e., contrib/nr/model/nr-net—-device.cc.

If the NrNetDevice log component is enabled, the simulation produces the following message:

+0.400533031s 1 NrNetDevice:Receive(): [INFO ] Received 128 bytes on.
—~00:00:00:00:00:09. IPv4 packet from 1.0.0.2 to 7.0.0.2

Finally, such packet is then available for the upper layers to consume, i.e., transport and application ones, thanks to the
m_rxCallback up-call.

5.12.1 Packet latency

Packets cannot incur latency in the NrUeNetDevice.

5.12.2 Packet drops

Packets cannot be dropped in the NrUeNetDevice.
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CHAPTER
SIX

CONCLUSIONS

In this tutorial, we have shown how the program cttc-nr-demo works, which is part of the ns-3 nr module. As we have
provided a detailed description of what happens layer-by-layer, the lifecycle of downlink packets has been shown for two
applications, one that focuses on low latency communications, and the other which focuses on high quality voice. These
two flows were characterized by different type of BWPs, which were handled differently by the NR RAN. At each layer,
the packet latency and the possibility of their drops were discussed.

We hope that this tutorial was useful in getting started with the nr module and better understand how this implementation
of the NR standard works. If you feel the need for any clarification or you want to update this document, please contact
us!
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